Homework 4

1. An Example of Extended GCD Algortihm (20 points). Recall that the extended GCD algorithm takes as input two integers a, b and returns a triple (g, α, β), such that

$$
g=\operatorname{gcd}(a, b), \text { and } g=\alpha \cdot a+\beta \cdot b .
$$

Here + and \cdot are integer addition and multiplication operations, respectively.
Find (g, α, β) when $a=2022, b=125$. You must show all your work.
Solution.
2. (20 points). Suppose we have a cryptographic protocol P_{n} that is implemented using αn^{2} CPU instructions, where α is some positive constant. We expect the protocol to be broken with $\beta 2^{n / 10} \mathrm{CPU}$ instructions.

Suppose, today, everyone in the world uses the primitive P_{n} using $n=n_{0}$, a constant value such that even if the entire computing resources of the world were put together for 8 years we cannot compute $\beta 2^{n_{0} / 10} \mathrm{CPU}$ instructions.
Assume Moore's law holds. That is, every two years, the amount of CPU instructions a CPU can run per second doubles.
(a) (5 points) Assuming Moore's law, how much faster will be the CPUs 8 years into the future as compared to the CPUs now?

Solution.

(b) (5 points) At the end of 8 years, what choice of n_{1} will ensure that setting $n=n_{1}$ will ensure that the protocol P_{n} for $n=n_{1}$ cannot be broken for another 8 years?
Solution.
(c) (5 points) What will be the run-time of the protocol P_{n} using $n=n_{1}$ on the new computers as compared to the run-time of the protocol P_{n} using $n=n_{0}$ on today's computers? Solution.
(d) (5 points) What will be the run-time of the protocol P_{n} using $n=n_{1}$ on today's computers as compared to the run-time of the protocol P_{n} using $n=n_{0}$ on today's computers? Solution.
(Remark: This problem explains why we demand that our cryptographic algorithms run in polynomial time and it is exponentially difficult for the adversaries to break the cryptographic protocols.)
3. Finding Inverse Using Extended GCD Algorithm (20 points). In this problem we shall work over the group $\left(\mathbb{Z}_{257}^{*}, \times\right)$. Note that 257 is a prime. The multiplication operation \times is "integer multiplication $\bmod 257$."

Use the Extended GCD algorithm to find the multiplicative inverse of 55 in the group $\left(\mathbb{Z}_{257}^{*}, \times\right)$. You must show all your work.

Solution.

4. Another Application of Extended GCD Algorithm (20 points). Use the Extended GCD algorithm to find $x \in\{0,1,2, \ldots, 2235\}$ that satisfies the following two equations.

$$
\begin{array}{ll}
x=2 & \bmod 52 \\
x=3 & \bmod 43
\end{array}
$$

Note that 43 is a prime, but 52 is not a prime. However, we have the guarantee that 52 and 43 are relatively prime, that is, $\operatorname{gcd}(52,43)=1$. Also note that the number $2235=52 \cdot 43-1$. You must show all your work.
Solution.
5. Square Root of an Element (20 points). Let p be a prime such that $p=3 \bmod 4$. For example, $p \in\{3,7,11,19 \ldots\}$.
We say that x is a square-root of a in the group $\left(\mathbb{Z}_{p}^{*}, \times\right)$ if $x^{2}=a \bmod p$. We say that $a \in \mathbb{Z}_{p}^{*}$ is a quadratic residue if $a=x^{2} \bmod p$ for some $x \in \mathbb{Z}_{p}^{*}$. Prove that if $a \in \mathbb{Z}_{p}^{*}$ is a quadratic residue then $a^{(p+1) / 4}$ is a square-root of a.
(Remark: This statement is only true if we assume that a is a quadratic residue. For example, when $p=7,3$ is not a quadratic residue, so $3^{(7+1) / 4}$ is not a square root of 3.)

Solution.

Collaborators :

